Lecture 42

HALT, More Undecidable Languages

Unrecognisability of HALT **Theorem:** $HALT = \{(\alpha, x) \mid M_{\alpha} \text{ does not halt on } x\}$ is unrecognisable. **Proof:** Suppose *HALT* is recognisable and M_1 is a TM that recognises *HALT*. Let M_2 be a TM that recognises HALT.

$$\alpha \longrightarrow M_1 \qquad acc \quad (M_\alpha \text{ does not half}) \\ x \longrightarrow rej / loop \quad (M_\alpha \text{ halts or })$$

Decider M for HALT on input (α, x) :

- Runs M_1 on (α, x) for one step, then M_2 on (α_2, x) for one step and so on.
- If M_1 accepts, then rejects.
- If M_2 accepts, then accepts.

A Few Observations

Theorem: If L is undecidable, at least one of L or \overline{L} will be unrecognisable. **Proof Idea:** The same as the proof of the last slide. **Theorem:** If L is decidable, then \overline{L} is decidable too. **Proof Idea:** Swap the q_{accept} and q_{reject} in the transition function of decider of L.

Undecidability of A_{TM}

Theorem: $A_{TM} = \{(\alpha, x) \mid M_{\alpha} \text{ accepts } x\}$ is undecidable.

Proof: Suppose A_{TM} has a decider M.

We can construct a decider M' for HALT that on input (α, x) : • Construct α' from α by replacing every occurrence of q_{reject} by q_{accept} . • If M accepts (α', x) , M' also accepts (α, x) . • If *M* rejects (α', x) , *M'* also rejects (α, x) . M_{α} halts on $x \implies M_{\alpha'}$ accepts x M_{α} does not halt on $x \implies M_{\alpha'}$ does not accept x

- Runs M on (α', x) :

Undecidability of Reg_{TM}

- **Theorem:** $REG_{TM} = \{ \alpha \mid L(M_{\alpha}) \text{ is regular} \}$ is undecidable.
- **Proof:** Suppose REG_{TM} has a decider M.
 - We can construct a decider M' for HALT that on input (α, x) : • Constructs a TM N that on input y does the following:
 - - If y is a prime, it accepts it.
 - If y is a not a prime, starts running M_{α} on x
 - If M_{α} halts on x, then N will accept y.
 - If M_{α} does not halt on x, then N will also not halt.
 - Runs M on $\langle N \rangle$:
 - If M accepts $\langle N \rangle$, M' also accepts (α, x) .
 - If M rejects $\langle N \rangle$, M' also rejects (α, x) .